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Equilibrium aspects of the molecular recognition of rigid biomolecules are investigated using coarse-grained
lattice models. The analysis is carried out in two stages. First, an ensemble of probe molecules is designed with
respect to the target biomolecule. The recognition ability of the probe ensemble is then investigated by
calculating the free energy of association. The influence of cooperative and anticooperative effects accompa-
nying the association of the target and probe molecules is studied. Numerical findings are presented and
compared to analytical results which can be obtained in the limit of dominating cooperativity and in the
mean-field formulation of the models.
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I. INTRODUCTION

Molecular recognition is the ability of a biomolecule to
interact preferentially with a particular target molecule
among a vast variety of different but almost identically look-
ing rival molecules. Examples of specific recognition pro-
cesses comprise enzyme-substrate binding, antibody-antigen
binding, protein-receptor interactions, or cell-mediated rec-
ognition �1,2�. Molecular recognition is essential for biologi-
cal systems such as the immune system to work efficiently.
Whereas macromolecules are held together by covalent
bonds, the recognition process is governed by specific non-
covalent interactions such as ionic binding, the van der
Waals interaction, the formation of hydrogen bonds, and hy-
drophobicity �3�. In an aqueous environment those noncova-
lent bonds contribute an energy of the order of 1–2 kcal/mol
with the relatively strong hydrogen bonds sometimes con-
tributing up to 8–10 kcal/mol �4�. The noncovalent bonds are
thus only slightly stronger than the thermal energy kBTroom
�0.62 kcal/mol at physiological conditions, and therefore
the specificity of biomolecule recognition is only achieved if
a large number of functional groups of the two molecules to
recognize each other precisely match and thus a large num-
ber of noncovalent bonds can be formed �5�. The binding
sites of the two molecules are said to be complementary to
each other. This view of molecular recognition for inflexible
macromolecules is sometimes called the “lock-and-key”
mechanism �6�. However, there are notable recognition pro-
cesses that involve flexible biomolecules �7�. The matching
of a large number of functional groups is then achieved by a
conformational change giving rise to large entropic contribu-
tions �so-called “induced-fit” scheme� �8�. In addition to
short-range interactions ensuring the stability of the complex
for a sufficiently large time, long-range electrostatic interac-
tions are believed to pre-orient the biomolecules so that the
probability of the contact of the complementary patches on
the two molecules upon collision is increased �9,10�.

An understanding of the principles of recognition pro-
cesses between biomolecules is not only important from a
scientific point of view, but also for biotechnological and
biomedical applications. Knowledge of these principles is a
necessary input for the design of synthetic heteropolymers
with molecular recognition ability so that they can interact

with a biological environment—i.e., biomolecules, cells, and
tissues—in a programmable way �see, e.g., the review in
�7��.

In recent years much effort has been spent investigating
the structural basis for the recognition of two rigid proteins
�2,9,11–14�. In particular, the recognition sites of the two
proteins in contact have been analyzed. The recognition site
on a protein basically consists of residues—i.e., amino
acids—which interact with residues of the other proteins. It
is found to be made up of largely hydrophobic residues so
that its hydrophobicity is comparable with that of the interior
of the protein. For the development of idealized coarse-
grained models, it is therefore assumed that hydrophobicity
plays a major role in recognition processes. Consequently,
the residue interactions in the idealized models investigated
in this article are assumed to be purely of hydrophobic na-
ture.

Investigation of the underlying mechanisms of molecular
recognition processes from a physical point of view has re-
cently gained growing interest. In particular, the question of
the specificity of recognition processes has been addressed
by methods of statistical mechanics �15–26�. Nevertheless,
the view of specificity, which is basically the occurrence of a
preferential binding of the recognition agents in the presence
of a diversity of rival molecules, remains yet incomplete �the
introductory remarks in �27� about the diversity of defini-
tions of specificity found in the literature still apply�.

In this article we develop coarse-grained lattice models
for the investigation of the principles of molecular recogni-
tion processes. Our approach, which is described in Sec. II,
consists of two stages: In the first step a design of probe
molecules is carried out. This step mimics the design in bio-
technological applications or the evolution in nature. In the
second step the recognition ability is calculated by consider-
ing the free energy of association of the probe molecules
with the target and a structurally different rival molecule.
This general approach is illustrated for a modified
hydrophobic-polar �HP� model in Sec. III. In Sec. IV the
modified HP model is extended to take cooperative effects on
a residue-specific level into account. The resulting model is
investigated in its mean-field formulation and in the limiting
case of dominant cooperativity, which can be tackled analyti-
cally. In addition, the model is investigated numerically for
the case where the contributions of the direct residue-residue
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interactions and the indirect cooperative interactions are of
same order. The findings are compared to the limiting case of
dominating cooperativity and to the mean-field findings. In
Sec. V another possible way to incorporate cooperative ef-
fects is analyzed. The article closes with a conclusion and an
outlook �Sec. VI�. Among other findings some of the numeri-
cal results have been published recently in a separate letter
�28�.

II. GENERAL APPROACH

In this article we study coarse-grained models for the rec-
ognition of two rigid proteins. Under physiological condi-
tions the complex of the proteins is stabilized by noncovalent
interactions across its interface. The binding of the proteins
is accompanied by a decrease of entropy due to immobilizing
translational, rotational, and conformational degrees of free-
dom. The gain in energy on forming the complex has thus to
be strong enough to overcome these entropic costs. In our
model the proteins are considered to be rigid so that confor-
mational changes of the backbone of the proteins need not be
taken into account. This assumption is fulfilled for a large
variety of real protein-protein associations; however, even
for the association of two rigid proteins minor rearrange-
ments of the side chains of the amino acids will occur �e.g.,
�11��.

The energetics at the contact interface of the complex can
be formulated in a coarse-grained way where coarse graining
is adopted both for the structural properties of the recogni-
tion sites of the involved biomolecules and for the interaction
between two residues �28�. Consider a recognition site of N
residues on both proteins. For simplicity, it is assumed that
the two recognition sites contain the same number of resi-
dues and that precisely two residues match respectively in
the interface. Notice that a recognition site found in natural
protein-protein complexes contains typically of the order of
30 residues �9,13�. The chemical structure of the recognition
site of the protein to be recognized, which is called the target
molecule in the following, is characterized in a coarse-
grained approach by a discrete variable �= ��1 , . . . ,�N�
where the value of �i specifies the type of the residue at
positions i, i=1, . . . ,N, on the recognition site. Similarly, the
types of residues of the recognition site of the other protein
which recognizes the target are specified by a second vari-
able �= ��i , . . . ,�N�. In the following this second biomolecule
is called the probe molecule. On a coarse-grained level, the
interaction of the functional groups across the interface is
described by a Hamiltonian H�� ,� ;S� where we incorporate
an additional interaction variable S= �S1 , . . . ,SN�. The vari-
able Si takes the quality of the contact of the residues of the
two proteins at position i into account, where a good contact
leads to a favorable contribution to binding and a bad one
only to a small contribution. A good contact may imply, for
example, that the distance between the two residues is small
or the polar moments of residues are appropriately aligned to
each other. A steric hindrance, on the other hand, may result
in a large distance between the residues and consequently
one has a bad contact. The variable S therefore models ef-
fects that are related to minor rearrangements of the side-

chains of the amino acids when the two proteins form a
complex.

Along these general lines a first model—namely, a modi-
fication of the HP model—can be formulated. In the HP
model only two different types of residues are
distinguished—namely, hydrophobic �H� and polar �P� �i.e.,
hydrophilic� ones—so that the variables � and � specify the
degree of hydrophobicity of the residues. This restriction to
the hydrophobic interaction is motivated by the observation
that the hydrophobicity is a major property that discriminates
the recognition site from other patches on the surface of a
protein. Hydrophobic residues are described by the variable
�i= +1 and polar residues by �i=−1. The Hamiltonian is
then given by

HHP��,�;S� = − ��
i=1

N
1 + Si

2
�i�i, �1�

where the sum extents over the N positions of the residues of
the recognition site and the interaction constant � is positive.
It is typically of the order of ��1 kcal/mol for hydrophobic
interactions �3�. The product −��i�i describes the mutual in-
teraction of the residues in contact across the interface. The
additional variable Si can take on the values ±1. Thus for
Si= +1 one has a good contact, leading to a nonzero contri-
bution to the total interaction energy; for Si=−1, on the other
hand, one has a bad contact and no energy contribution. No-
tice that a good contact does not necessarily lead to a favor-
able energy contribution. Note also that the original HP
model, which has been introduced to study the protein-
folding problem �29�, does not contain an additional variable
S to model the quality of the contact.

The grouping of the 20 natural amino acids into classes of
characteristic types is very important for the development of
minimal models for the study of protein interactions. The
reduction to a hydrophobic and a polar type and thus the use
of an Ising-like model Hamiltonian such as �1� on a coarse-
grained level is also justified by the findings in �30�. In this
work Li et al. applied an eigenvalue decomposition to the
Miyazawa-Jernigan matrix of the interresidue contact ener-
gies of amino acids. They found that the interaction matrix
can be parameterized by an Ising-like model where the “spin
variable” can take on different discrete values. As these val-
ues show, a bimodal distribution the reparametrization basi-
cally reduces to the Ising model where the two possible val-
ues of the “spins” describe hydrophobic and polar residues.
Introducing the additional variable S for the rearrangement
of the amino acid side chains, we end up with Hamiltonian
�1�. Suggested by experimental observations the grouping of
the amino acids into five characteristic groups is also widely
discussed �31,32�. The reduction in �32�, for example, uses a
distance-based clustering applied to the Miyazawa-Jernigan
matrix. The resulting grouping reproduces the statistical and
kinetic features of well-designed sequences in the protein-
folding problem. The grouping into five different character-
istic types in these approaches points at possible extensions
of our model for the contact interaction. In this work, how-
ever, we restrict ourselves only to hydrophic and polar resi-
due types.
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To study the recognition process between the two biomol-
ecules, we adopt a two-stage approach. First, the structure of
the recognition site of the target molecule is fixed to a certain
sequence ��0�= ��1

�0� , . . . ,�N
�0�� of residues. Then this structure

is learned by the probe with respect to some learning rules
under conditions that are specified by a parameter �D. This
leads to an ensemble of probe molecules of sequences � at
their recognition sites with a probability P������0�� depending
on the initially fixed target structure. To illustrate this a bit
further consider a design step where learning is done just by
thermal equilibration. The probability distribution is then
technically given by the canonical Boltzmann distribution

P������0�� =
1

ZD
�

S

exp�− �DH���0�,�;S�� , �2�

where the normalization ZD is the usual canonical partition
function. The design temperature �D acts as a Lagrange mul-
tiplier that fixes the average energy; however, the parameter
�D may also be interpreted to describe more generally the
conditions under which the design has been carried out. This
first design step is introduced to mimic the design in biotech-
nological applications or the process of evolution in nature
�33�. Note that in some studies of the protein-folding prob-
lem �34,35� and the adsorption of polymers on structured
surfaces �36� a similar design step has been incorporated.

In the second step the recognition ability of the designed
probe ensemble of structures � is tested. To this end the
ensemble is brought into interaction with both the picked
target structure ��0� and a competing �different� structure ��1�

at some inverse temperature � which in general is different
from the design temperature �D. The free energy of the probe
system interacting with the structure ����, �=0,1, is then

F��� = �
�

F���������P������0�� , �3�

where F��������� is the thermal free energy for the interaction
between ���� and a fixed probe sequence � and an average
over the structures in the probe ensemble is carried out. The
free energy F��������� is given by

F��������� = −
1

�
ln �

S

exp�− �H�����,�;S�� . �4�

The target with the structure ��0� at its recognition site is
recognized by the probe if the associated free energy F�0� is
lower than the free energy F�1� for the interaction with the
competing structure ��1�; i.e., in a mixture of equally many
��0� and ��1� molecules the probe molecules preferentially
bind to the original target. This is signaled by a negative free
energy difference �F���0� ,��1��=F�0�−F�1�. Thus the speci-
ficity of the recognition process is related to the difference
between the free energy of association for the competing
molecules. For the given structures ��0� and ��1� one can
introduce a suitable measure Q for the structural similarity of
the target and the rival biomolecule. Carrying out an average
over all target and rival structures that are compatible with
the specified similarity Q one can compute the averaged free
energy difference of association �F�Q� as a function of the

similarity between the target and the rival and therefore in-
vestigate the overall recognition ability of the model �see
Sec. III below for the HP model�. Note that in our approach
the mechanism which brings the two interacting molecules,
in particular the two recognition sites, into contact is not
taken into account; i.e., only equilibrium aspects are consid-
ered.

In principle, interactions of the residues which do not be-
long to the recognition sites with solvent molecules have to
be considered as well. Solvation effects at the recognition
sites and the associated entropy changes are also important
for the association process of biomolecules �37,38�. In the
coarse-grained model, however, it is assumed that all these
contributions are of the same size for all proteins under con-
sideration. Note also that solvation effects are already par-
tially contained in HP models. In addition, the entropic con-
tributions due to a reduction of the translational and
rotational degrees of freedom upon forming a complex can
be assumed to cancel out in the free energy difference �F in
a first approximation. This requires at least that the two com-
peting proteins be of comparable shape and size.

In this work we assume that the proteins have the same
number of residues at the interface. However, many protein-
protein interfaces are curved with different numbers of resi-
dues on the two proteins �10�. Nevertheless, we expect our
assumption not to be crucial within the above simplified
coarse-grained view, at least in a first approximation. As our
model characterizes the residues only with respect to their
hydrophobicity, one can partition the interface into N con-
tacts and attribute hydrophobicities to the patches on the two
proteins that contribute to a particular contact. Then one ends
up again with our Hamiltonian �1�. For approaches where the
residue type is determined by additional features apart form
hydrophobicity, correlations between neighboring patches
might occur so that our assumption may become question-
able.

III. APPLICATION TO A MODIFIED
HYDROPHOBIC-POLAR MODEL

The modified HP model of the previous section, can again
serve as an illustration of the two-state approach for investi-
gating molecular recognition processes. As �1� does not in-
volve any interaction between neighboring residues of the
recognition site of a protein, the two-stage approach can be
worked out exactly.

Design by equilibration. For the HP model the design
governed by thermal equilibration leads to the conditional
probability

P������0�� =

exp� ��D

2 �
i

�i�i
�0�	

�2 cosh� ��D

2 ��N �5�

of the structure � at the recognition site of the probe mol-
ecule. As mentioned in the previous section, the design tem-
perature �D may be interpreted to characterize the conditions
under which the design has been carried out. This can be
illustrated using the present example of the HP model. In the
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HP model the value of �i or �i, respectively, basically speci-
fies the hydrophobicity of the residue at position i. The total
hydrophobicity of the recognition site of the target molecule
is then H�0�=�i�i

�0�. From relation �5� one can calculate the
average hydrophobicity 
HD� of probe structures:


HD� = �
k

�
�

�kP������0�� = H�0� tanh���D

2
	 . �6�

Thus the Lagrange parameter �D can be used to fix the av-
erage hydrophobicity of the designed probe ensemble, which
is achieved by controlling the supply of hydrophobic resi-
dues during the design procedure.

The probability distribution �5� for the designed structures
� explicitly depends on the structure ��0� of the recognition
site of the fixed target molecule. For the HP model a design
under ideal conditions—i.e., 1 /�D=0—the structure � would
simply be a copy of ��0�. However, for nonideal conditions
with �D�	 “defects” appear in the design procedure and the
obtained structure � deviates on average from ��0�. This de-
viation can be quantified by the complementarity parameter

K��,��0�� = �
i

�i�i
�0�. �7�

The possible values of K range from −N to N in even steps.
A value K�� ,��0�� close to N means a high complementarity,
and the interaction of the probe structure � with ��0� can lead
to a large enough energy decrease so that a complex can be
formed. On the other hand, a value of K�� ,��0�� much less
than N signals a poor match between the two recognition
sites and therefore it is unlikely that a complex is stabilized.

The probability distribution P������0�� can be converted to
a distribution function for the complementarity, leading to
the probability

P�K� = �
�

P������0��
K��,��0��,K �8�

=� N
1
2 �N + K� 	 exp� ��D

2 K�
�2 cosh� ��D

2 ��N �9�

to have a complementarity parameter K in the designed en-
semble. The quality of the design can now be measured by
the average complementarity of the designed structures �,
which is given by


K� = �
K

KP�K� = N tanh���D

2
	 �10�

for the modified HP model. For large �D one gets a probe
ensemble which is fairly complementary to the fixed target
structure. Thus large values of �D correspond to good design
conditions, an observation which can already be deduced
from the interpretation of �D as an inverse temperature. In
the hydrophobicity interpretation discussed above large val-
ues of �D signify comparable hydrophobicities of the target
and the probe molecule.

Recognition ability. The recognition ability of the probe
molecules is tested by comparing the free energy of associa-
tion with the target structure ��0� and a competing molecule

with structure ��1� at its recognition site. For the HP model
�1� with its two different types of residues, one can introduce
the similarity parameter

Q = �
i

�i
�0��i

�1�. �11�

For Q close to its maximum value N the competing molecule
has a recognition site that is almost identical to the one of the
target molecule. In terms of the similarity parameter Q the
free energy difference is given by

�F�Q� = −
1

2
�N tanh���D

2
	�N − Q� . �12�

The free energy difference is always negative as soon as the
recognition site of the competing molecule is not identical to
the one on the target molecule. In equilibrium, the probe
molecule therefore binds preferentially to the target molecule
and thus the target molecule is specifically recognized. The
difference in free energy increases for an decreasing similar-
ity parameter Q. Note also that the slope of the free energy
difference depends only on the conditions under which the
design of the probe molecules has been carried out.

IV. ROLE OF COOPERATIVITY IN MOLECULAR
RECOGNITION

Cooperative effects play an essential role in many biologi-
cal processes such as the catalysis of biochemical reactions
by enzymes. Cooperativity is presumably also very impor-
tant for molecular recognition processes �39�. In general, co-
operativity means that the binding strength of two residues
depends on the binding interactions in the neighborhood of
the two residues in contact. Thus the energetic properties of
residues when interacting with other residues cannot be in-
ferred by considering them isolated from the local environ-
ment. This has implicitly been done, however, in the modi-
fied HP model �1� where the interaction constant � has been
attributed to the residue-residue interaction independently of
the corresponding local environment.

In this section the modified HP model of the preceding
section is extended to incorporate the effect of cooperative
interactions on molecular recognition. Note that in Ref. �39�
it has been argued that cooperativity should be incorporated
on a residue-specific level.

During the association process, rearrangements of the
amino acid side chains are observed. Thus in the idealized
model applied in this work cooperative effects stem from the
behavior of the variables Si. A possible extension of the
modified HP model which takes cooperative interactions into
account is given by

H��,�;S� = − ��
i=1

N
1 + Si

2
�i�i − J�


ij�
SiSj . �13�

The first sum describes again the hydrophobic interaction,
whereas the second sum represents the additional coopera-
tive interaction. It extends over the neighbor positions of the
residue at position i. For a fixed i on a square-lattice the sum
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includes therefore four terms. The interaction coefficient J is
positive for cooperative interactions and negative for antico-
operative interactions. To get an impression of its effect con-
sider the design step. Suppose that at position i one has a
hydrophobic residue on the target molecule. Then the first
term in the HP Hamiltonian �13� favors a hydrophobic resi-
due adsorbing there with a good contact Si= +1 on average.
Suppose now that on one of the neighboring positions j of i
on the target one has again a hydrophobic residue. If a hy-
drophobic residue gets adsorbed at the corresponding posi-
tion of the probe structure, a good contact with Sj = +1 is
favored by the hydrophobic interaction term in �13�. But then
the second cooperative term leads to an additional energy
decrease for J�0. If on the other hand a polar residue shows
up at the position j on the probe molecule, the hydrophobic
contribution in �13� tries to avoid a contact—i.e., Sj =−1, on
average—which then leads to an unfavorable energy increase
due to the cooperative term. The quality of a contact thus
couples to the quality of the contacts in the neighborhood of
a residue. For a positive constant J the cooperativity is there-
fore expected to enhance the fit of the molecules at the in-
terface, resulting in an increased average complementarity
compared to an interaction without cooperativity. Similarly,
one expects an increase in the recognition specificity. In the
subsequent subsections these suggestions are investigated for
cooperative interactions.

Note that �i �and thus the product �i�i� in Hamiltonian
�13� is a random variable whose distribution is obtained by
the design step. The energy function �13� describes therefore
a random field Ising model. Contrary to the models mostly
investigated in the literature �e.g., �40,41��, the distribution
function of the random variable �i�i is not symmetric with
respect to a sign reflection.

A. Limiting case of dominant cooperativity

The case where the cooperative contribution to the total
energy dominates can be investigated analytically. Consider
the situation where J�N�. The cooperative term −J�
ij�SiSj

in the Hamiltonian �13� has discrete energy levels −4NJ ,
−4�N−1�J , . . . , +4NJ for a recognition site with a rectangu-
lar geometry where each residue has four neighbors. The
hydrophobic interaction term −��i

1+Si

2 �i�i has also discrete
levels ranging from −N� to +N�. For the above assumption
J�N� the global rough structure of the spectrum of the
Hamiltonian �13� is basically determined by the cooperative
contributions. The hydrophobic interaction of the residues in
contact introduces only small variations about the main en-
ergy levels with two adjacent ones being separated by an
amount of 4J. For a small temperature—i.e., a large �—the
statistical behavior is dominated by the twofold-degenerate
lowest-energy state of the cooperative interaction term with
all Si being either in the state +1 or in the state −1. Due to
this reduction of the phase space of possible S configura-
tions, the two-stage approach can be worked out analytically.
The dominance of the cooperative term leads to the new
effective Hamiltonian

H �
J��N

−
1 + s

2
��

i=1

N

�i�i − 4NJ , �14�

where the scalar variable s can have the values ±1. The de-
sign step now yields the probability distribution

P������0�� =

1 + exp���D�
i

�i�i
�0�	

2N + �2 cosh���D��N �15�

for the structure of the recognition site of the probe mol-
ecules. The corresponding distribution of the complementar-
ity between the structures ��0� and � is

P�K� = � N
1
2 �N + K� 	 1 + exp���DK�

2N + �2 cosh���D��N . �16�

The distribution function for the complementarity parameter
K can again be used to calculate the average complementar-
ity of the designed molecules. For large N �for which the
term 2N in the denominator of �16� can be neglected as long
as �D�0� one obtains


K� �
J��N

N tanh���D� . �17�

In the situation of a dominating cooperative interaction the
average complementarity is increased compared to the case
where cooperativity is absent. This suggests that values of
the cooperativity interaction constant J comparable to the
size of the hydrophobic interaction constant � might also
enhance the quality of the design step. This question is in-
vestigated numerically in the subsequent Sec. IV B.

In the second step the designed probe ensemble interacts
with the chosen target structure ��0� and a competitive one
��1�. The associated free energy averaged with respect to the
distribution of the structures � of the probe molecules is in
general given by

F��� = −
1

�
�

�

ln�1 + exp����
i

�i�i
����� �18�

�

1 + exp���D�
i

�i�i
�0��

2N + �2 cosh���D��N . �19�

In the case of a large number of residues N�1, again further
progress can be made analytically. Consider first the free
energy of association of the system with the fixed target
structure. In this case the sum over the possible structures of
the designed probe molecules can be converted into a sum
over the complementarity parameter K:

F�0� = −
1

�
�
K

ln�1 + exp���K��P�K� . �20�

The dominant contributions to this sum arise from the values
of K close to the maximum of the distribution P�K�. For
suitably large �D this maximum, however, occurs for K
�O�N� and thus it is large as well �compare relation �17��.
Therefore, in the limit N�1 one can use the replacements
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1+exp��D�K�exp��D�K� and ln�1+exp���K����K.
Using these approximations the summation in �20� leads to

F�0� �
N�1

− ��
K

KP�K� = − �
K� =
�17�

− �N tanh���D� .

�21�

A similar conversion cannot be applied to the summation
over the designed molecules in the calculation of F�1� as both
�i�i

�0� and �i�i
�1� terms appear. Defining the auxiliary vari-

ables ki : =�i�i
�0� and qi : =�i

�0��i
�1� and noting that ��i

����2=1,
the free energy F�1� is explicitly given by

F�1� = −
1

�
�

k

ln�1 + exp����
i

kiqi�� �22�

�
1 + exp���D�i

ki�

2N + �2 cosh���D��N . �23�

The variable ki specifies the local complementarity between
the target ��0� and a particular probe structure �. Using again
the observation that the dominant contributions originate
from values of large K=�iki, one can use again the replace-
ment 1+exp��D�K�exp��D�K�. The logarithmic factor in
�22� gives large contributions if the majority of the qi vari-
ables are in state +1. Thus, in the limit of Q=�iqi�1 the
sum in �22� can be worked out and one obtains

F�1� �
N,Q�1

− �Q tanh���D� . �24�

The free energy difference in terms of the similarity Q of the
competing molecules ��0� and ��1� is now given by

�F �
N,Q�1

− � tanh���D��N − Q� �25�

for positive and large Q. Again, one has a linear dependence
in the vicinity of Q=N. This can be compared to the corre-
sponding result �12� for the situation with J=0. The cooper-
ativity increases the slope of the free energy difference, and
thus the recognition ability of the designed probe ensemble is
increased by cooperativity.

In the limit Q=�iqi�−1, on the other hand, almost all qi
take on the value −1 and thus �ikiqi is close to −N for those
ki leading to the dominant contributions in �22�. One there-
fore has

ln�1 + exp����
i

kiqi�� �
N�1,Q�−1

exp�− ��N� �26�

for the logarithmic factor of the dominant terms in �22�. The
free energy of association of the probe molecules with the
rival molecule is thus F�1��O�e−N� so that

�F �
N�1,Q�−1

F�0� = − �N tanh���D� . �27�

In the limit Q�−1 the free energy difference is thus inde-
pendent of the similarity parameter Q between the target
structure and the rival structure.

For a similarity parameter �Q��O�1� one expects devia-
tions form the behavior for large �Q�. For the free energy

difference per residue, �F /N, as a function of the similarity
per residue, Q /N, however, the deviations show up for simi-
larities Q /N of the order of 1 /N. The free energy difference
per residue will thus develop a kink at Q /N=0 in the
asymptotic limit of N→	 so that it is given by expression
�25� for positive Q /N and by relation �27� for negative Q /N.
The range of values of the similarity per residue where de-
viations between the free energy for a system with finite N
and the asymptotic result show up is shrinking for increasing
N.

B. Numerical results for arbitrary cooperativity

The above analysis of the limiting case J�N� with a
dominant cooperative interaction suggests that cooperativity
enhances the quality of the design step and eventually in-
creases the recognition ability. In this section this suggestion
is investigated more closely for cooperativity constants J
which are of the order of the interaction constant � of the
hydrophobic interaction term in �13�.

Design. For nonzero, but finite values of J it is not pos-
sible any more to solve the model analytically. Therefore, the
two-stage approach has to be carried out numerically. To this
end the density of states for the design step is calculated as a
function of the energy and the complementarity parameter
for a fixed cooperativity J. The density of states is generally
given by

J�K;E� = �
�,s


K,K��,��0��
E,H��,��0�;S� �28�

for a fixed target structure ��0�. The density of states,
J�K ;E�, is thus the number of �� ,S� configurations that
have energy E when interacting with the target and a comple-
mentarity K of the probe molecule � to the target recognition
site. In general, the density of states depends additionally on
the configuration ��0� of the recognition site of the target
molecule. However, for the HP model �13� the density of
states has no explicit dependence on ��0� as the variables �i

can be transformed to the auxiliary variables ki : =�i
�0��i,

which have the same phase space as �i, so that ��0� does not
appear anymore.

The density of states can be calculated directly using ef-
ficient Monte Carlo algorithms �42–44�. In this work the
Wang-Landau algorithm has been applied. Once the density
of states is known, the probability distribution of the comple-
mentarity is basically obtained by calculating the Laplace
transform of J, giving, up to a normalization,

PJ�K;�D� � �
E

J�K,E�exp�− �DE� . �29�

From this distribution function one can calculate the average
complementarity 
K��J�=�KPJ�K ;�D�K, which is shown in
Fig. 1. The calculations have been carried out for a square-
lattice geometry with N=256 residues. We have checked that
the curves show only minor finite-size effects for recognition
sites of realistic sizes with N�O�30� �see �28��. The quali-
tative findings discussed in the following are independent of
the number N of residues involved in the interface. It can be
seen that cooperativity increases the average complementar-
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ity of the probe molecules for large enough values of �D. For
a parameter value of the order of ��D�1, a small change in
the cooperativity J leads to a large difference in the average
complementarity. Therefore, small changes in J can have a
large impact on the quality of the design step. As the typical
energy � of a noncovalent bond is of the order of 1 kcal/mol,
this regime corresponds indeed to physiological conditions.

The Hamiltonian �13� contains a cooperative term where
the quality of the contact couples to the contact variable at
the neighboring sites. This limitation to nearest-neighbor in-
teractions can be relaxed by allowing additional couplings to
sites that are farther away. As long as the range of the coop-
erative coupling is finite, however, we expect that the aver-
age complementarity 
K� is qualitatively similar as for model
�13�. For the system with nearest- and next-nearest-neighbor
interactions �with the same constant J�, the case of dominant
cooperativity can be treated as above �Sec. IV A�, leading to
the same effective Hamiltonian �14� with the irrelevant con-
stant replaced by −8NJ. So the same limiting curves for 
K�
as well as �F result. However, the additional interactions
have the consequence that the maximum effect of cooperat-
ivity will already show up for smaller values of J. This is
shown in Fig. 1 for the model with additional next-nearest-
neighbor cooperativity.

Before analyzing the recognition ability for J�0, con-
sider briefly the influence of an anticooperative interaction
with J�0 in Hamiltonian �13� on the average complementa-
rity 
K�. From the discussion of the effect of the cooperative
term within the design step, one may expect that anticoop-
erative interactions should decrease 
K�. For a probe mol-
ecule with a high complementarity to the target molecule, all
Si tend to be in state +1 to ensure good contacts and thus a
large energy decrease due to the hydrophobic interaction.
However, the anticooperative term then leads to an energy
increase so that the two contributions to the Hamiltonian �13�

compete with each other. Two different regimes can now be
expected. Large values of the parameter �D favor structures
� that are highly complementary to the target ��0�. For 0
�J�−� /8 the hydrophobic interaction term is dominant,
leading to a majority of good contacts Si= +1, and thus 
K�
is expected to become N for increasing �D. However, if J
�−� /8, the second anticooperative term dominates, leading
to an alternating structure of good and bad contacts where
the Si of two neighboring positions have different signs. Note
that in such a situation the direct hydrophobic-polar interac-
tion contributes a maximum favorable energy −� /2 per site,
whereas the cooperative term gives the maximum contribu-
tion 4J per site giving the crossover value J=−� /8 for the
considered square geometry. For one-half of the residues one
therefore has preferably good contacts so that the residue on
the probe molecule is of the same type as the one on the
target molecule on average. For the other half of the posi-
tions, however, one has bad contacts. For those positions the
hydrophobic interaction term in �13� does not contribute and
the probabilities of the residue on � to be hydrophobic or
polar at such positions are equal. For J�−� /8 one thus ex-
pects that 
K� tends to N /2 for increasing �D. These expec-
tations are indeed confirmed by numerical investigations as
shown in Fig. 2.

In the general discussion of the extended model �13�, it
has been argued that the cooperative term will increase the
effective contribution of a residue-residue contact at the in-
terface between the two biomolecules. To get an impression
of this increase one can define an effective residue-residue
interaction constant �eff��D,J� : = 
H�J�� / 
HHP� by consider-
ing the average interaction energy of the probe ensemble
with the target molecule for different values of the cooperat-
ivity J. Figure 3 shows that this effective interaction constant
is indeed increased by the cooperative term in the Hamil-
tonian �13�.

Recognition ability. Knowledge of the density of states
allows the calculation of the recognition ability quantified by
the free energy difference

�F�Q� =


Q,�i�i

�0��i
�1��F���0�,��1�����0�,��1�



Q,�i�i
�0��i

�1����0�,��1�
�30�

for the association of probe molecules with the two struc-
tures ��0� and ��1�. The results are shown in Fig. 4 for dif-
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FIG. 1. Average complementarity per site of the designed en-
semble for the HP model �13� for different values of J. The lower
dashed curve corresponds to J=0; the upper dashed line represents
the limiting case J→	 �for large N�. The solid curves in between
from the bottom up correspond to the values 0.1, 0.25, 0.5, 0.75,
and 1.0 of J in units of �. The dotted curve shows the result for a
system with additional next-nearest-neighbor cooperativity with
JNNN/�=JNN/�=0.1. The inset compares the numerical results
�solid lines� with the mean-field findings of Sec. IV C �circles� for
cooperativities 0.25 and 0.5 from the bottom up. The dashed curve
corresponds again to J=0.
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FIG. 2. Average complementarity of the probe ensemble for the
anticooperative HP model �13� with J�0. The dashed line repre-
sents J=0; the solid curves from top to bottom correspond to the
values −0.1, −0.2, and −0.5 of J in units of �.
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ferent values of the J. For comparison, the free energy dif-
ference for the system with additional next-nearest-neighbor
cooperativity is shown as well. An increase in J increases the
free energy difference and therefore the recognition specific-
ity of the probe molecules. For a value of J of the order � the
maximum effect of cooperativity has already been reached
for the considered temperature values �D=�=1.0. Thus, the
expected increase of the recognition ability by cooperativity
for constants J�� is indeed confirmed by the numerical re-
sults.

To study the influence of different cooperativities on the
recognition ability in a more direct way the following ap-
proach can be adopted. The cooperativity already influences
the design step and optimizes the probe ensemble with re-
spect to the original target structure as can be seen by the
dependence of 
K� on the J. This better optimization influ-
ences the testing step as well. In order to investigate the pure
influence of the cooperative interaction on the recognition
ability more closely, one can use probe ensembles where the
average complementarity is fixed to some values K0 for dif-

ferent J. This can be done by carrying out the design of the
probe molecules at different design temperatures such that

K���D,J�=K0. The probability distributions obtained when
this additional constraint is applied are then used to calcu-
lated the difference of the free energy of association of the
probe molecules with both the target and the rival molecule.
The results are shown in Fig. 5 for recognition sites with N
=64 residues. Again, it can be seen that an increase in the
cooperativity J increases the free energy difference for a
fixed similarity Q /N between the target and the rival biomol-
ecule. The dashed lines in Fig. 5 represent the free energy
difference for J=0 and for the asymptotic regime J→	 with
N�1. For large Q /N and large J the free energy difference
is already well represented by the asymptotic result. For a
cooperativity J�� the maximum effect is thus already
achieved.

For the minimum similarity parameter Q=−N the free en-
ergy difference at fixed K0 is independent of the cooperativ-
ity J �compare Fig. 5�. To see this consider the fixed structure
��0� of the recognition site of the target. As the similarity
parameter Q is minimum, the competing molecule has the
structure ��1�=−��0� at its recognition site. The free energy
difference of association is then given by �F�−N�=
− 1

���PJ������0���ln Z������0��−ln Z����−��0���. The partition
function Z������1��=Z������0�� related to the rival structure ex-
plicitly reads

Z������0�� = exp�−
��

2 �
i

�i
�0��i	 �31�

��
S

exp�− ���
i

Si

2
�i

�0��i + �J�

ij�

SiSj	
�32�

=exp�− ���
i

�i
�0��i�Z������0�� , �33�

where a transformation Si→−S̃i has been used for the last

equality. Note that the phase space for S̃ is the same as for
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FIG. 3. Effective interaction constant �eff as defined in the main
text as a function of the temperature for the model �13�. The solid
curves correspond to values 0.25, 0.5, 0.75, and 1.0 of J �in units of
�� from the bottom up.
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FIG. 4. Free energy difference per site of the association of the
probe ensemble with the two competing molecules as a function of
their similarity for different cooperativities J in �13�. The upper
dashed line corresponds to J=0. The lower dashed line describes
the limiting case J→	 in the limit of large N �Sec. IV A�. The solid
curves from top to bottom correspond to the same values of J as in
Fig. 1. The dotted curve shows the result for a system with addi-
tional next-nearest-neighbor cooperativity with JNNN/�=JNN/�
=0.1. The parameters �D and � are both 1.0.
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FIG. 5. Free energy difference as a function of the similarity for
different cooperativities J �with �=1.0� where the probe ensemble
has been designed to have a fixed 
K� /N=0.4. The upper dashed
lines corresponds to J=0; the lower one describes the limiting case
J→	 �and large N�. The values of J /� in �13� are 0.25, 0.5, 0.75,
and 1.0 for the solid curves from top to bottom. For the dotted line
J /�=−1/2.
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the variable S. Thus the free energy difference at Q=−N is
generally given by

�F�Q = − N� = − ��
K

PJ�K;�D�K = − �
K��J� . �34�

As the average 
K� is fixed to the value K0 for different J, the
free energy difference is the same for all J.

For the HP model with pure hydrophobic interactions the
free energy difference is independent of the conditions under
which the recognition ability is tested. It is only determined
by the design conditions �compare relation �12��. For the
extended HP model �13� with cooperative interactions, this is
no longer the case. Apart from the design conditions, en-
coded in the Lagrange parameter �D, the free energy differ-
ence depends on �, which specifies the conditions for the
testing step. In Fig. 6 the free energy difference is shown for
different values of �. The cooperativity constant is fixed to
be J /�=1/2; the design temperature �D is chosen to have

K�=N /2. For increasing parameters � the absolute value of
the free energy difference is increased. For the minimum
similarity Q=−N the free energy difference becomes inde-
pendent of �. Its value at the minimum similarity is only
determined by the design conditions and is given by �F�Q
=−N�=−�
K� as has been shown above.

The independence of �F�Q=−N� of the testing tempera-
ture � is a result of the symmetry of the underlying model
�13�. This symmetry is broken by introducing a fieldlike term
−�i�Si to the energy. It is expected that there is some bias
toward good or bad contacts, leading to a such an additional
field with ��0. For positive fields � the recognition ability
is again expected to be increased with respect to the situation
where � vanishes. This is shown by the dotted lines in Fig. 6.

C. Mean-field theory for arbitrary cooperativity

After having analyzed the influence of the cooperative
terms in the previous sections by means of an asymptotic
analysis and Monte Carlo simulations, we briefly sketch how
a mean-field treatment can be carried out �45�. The discus-

sion will be restricted to the determination of the averaged
complementarity. As already mentioned, the variable �i�i
acts as a random field in �13� and therefore techniques from
the theory of disordered systems have to be applied in the
mean-field treatment �see, for example, �40,41��. Thus the
auxiliary variable ki=�i�i

�0� which has been introduced in
Sec. IV A and specifies a complementarity configuration k
= �k1 , . . . ,kN� is used in the following. The mean-field ap-
proach consists of two steps—namely, an equivalent neigh-
bor approximation of the cooperative interaction term and an
asymptotic evaluation of the partition sum for large N. The
equivalent neighbor approximation of the Hamiltonian �13�
reads

HEN = −
J

2N��
i

Si	2
− ��

i

1 + Si

2
ki. �35�

We aim at a calculation of the averaged complementarity K
= 
�iki� containing a thermal average with respect to the in-
teraction variable S and an average over the possible comple-
mentarity configurations k of the probe molecules with re-
spect to the target. The thermal average leads to the
distribution P������0�� of probe molecules and thus to a dis-
tribution P�k� of the complementarity configuration itself.
Consider first the thermal average with respect to S. The
variable x : =�iSi appears quadratically in �35�. By introduc-
ing an additional auxiliary variable y, it can be linearized in
the argument of the Boltzmann factor in the partition sum
Z�k�=�Sexp�−�HEN� with the help of the identity

exp� a

2N
x2	 = �

−	

+	

dy�Na

2�
exp�−

Na

2
y2 + axy	 , �36�

often called the Hubbard-Stratonovich transformation in the
literature. Note that the distribution function P�k� of the
complementarity configuration is determined by Z�k� up to
the normalization. The summation over S can then be carried
out, leading to

Z�k� � exp���

2 �
i

ki	�
−	

+	

dy exp�A�y,k�� , �37�

with

A�y,k� = −
�JN

2
y2 + �

i

ln cosh��Jy +
��

2
ki	 . �38�

In the asymptotic limit of large N the integration over the
auxiliary field y in �37� can be carried out using the Laplace
method �e.g., �46,47��. This gives

Z�k� � exp���

2 �
i

ki + A�y0,k�	 �39�

aside from irrelevant factors. The mean field y0 is determined
by the saddle point equation
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FIG. 6. Free energy difference as a function of the similarity for
fixed J /�=1/2 in �13� and different testing temperatures �. The
probe ensemble has been designed to have 
K� /N=0.5. The solid
curves correspond to the �=0.5, 0.75, 1.0, and 1.25 from top to
bottom. For the dashed curves �=1.25 and an additional field � has
been applied—namely, from top to bottom, � /�=0.05, 0.1, and
0.15.
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y0 =
1

N
�

i

tanh��Jy0 +
��

2
ki	 . �40�

Note that the mean field explicitly depends on the local
complementarity configuration k. These two equations can
be used to carry out the configurational average over all k to
obtain the averaged complementarity 
K� by noting that a
particular configuration k contains K�+� sites with ki= +1 and
K�−� ones with ki=−1. The partition function Z �and thus the
distribution function P� as well as the mean field y0 are
therefore only functions of K�±�. The mean field
y0�K�+� ,K�−��, for example, is then given by

y0 =
K�+�

N
tanh��Jy0 +

��

2
	 +

K�−�

N
tanh��Jy0 −

��

2
	 .

�41�

The average over k can thus be converted to an average over
�K�+� ,K�−�� so that the complementarity 
K�= 
K�+�−K�−�� can
by worked out using a computer algebra program. The re-
sults are shown in the inset of Fig. 1 together with the Monte
Carlo findings discussed in the previous paragraph. The
mean-field curves behave qualitatively similarly as the
Monte Carlo curves. Using a similar decomposition of the
similarity configuration qi=�i

�0��i
�1� between the target and

the rival structure into positive contributions Q�+� and nega-
tive ones Q�−�, one can calculate the averaged free energy
difference �F�Q� �compare relation �30��. The resulting
curves show again the same qualitative behavior as the re-
sults from the Monte Carlo simulations.

V. COOPERATIVITY COUPLING TO RESIDUE
STRUCTURE

The importance of cooperativity in biological situations
was emphasized at the beginning of Sec. IV. In Hamiltonian
�13� an additional cooperative term has been introduced,
which, however, does not couple to the residue distributions
on the recognition sites of the two molecules in contact. In
general, the additional cooperative interaction terms might
also couple to the structures � and � of the target and probe
molecules, respectively. One possible coupling is given by
the Hamiltonian

H��,�;S� = − �
i=1

N ��
1 + Si

2
+ J�

i


SiSi
	�i�i. �42�

The sum in the second term extends over the neighboring
positions i
 of position i on the interface. Again, the coop-
erative term will lead to an additional energy contribution
depending on how the side chains are rearranged in the in-
terface. In the case of a favorable direct energy contribution
from the hydrophobic interaction at site i described by the
product �i�i, the cooperative term rewards good contacts like
in Hamiltonian �13�. However, in �13� two neighboring bad
contacts due to an unfavorable hydrophobic-polar interaction
are also attributed a favorable cooperative contribution. This
is no longer the case in Hamiltonian �42� as the sign of the
cooperative energy contribution now depends on the sign of

the hydrophobic interaction energy at position i on the inter-
face. It is thus expected that the cooperative terms in �42�
lead to a more favorable cooperative contribution than those
in Hamiltonian �13�. The cooperative terms in Hamiltonians
�42� are only two possible ways to take into account coop-
erativity, corresponding in our modeling to mutual interac-
tion of neighboring variables Si; other extensions are pos-
sible as well.

As already remarked, the variable �i�i in �13� is basically
a random field the distribution of which is determined by the
design step. The model �13� is thus a random field Ising
model where the random field �i�i is asymmetrically distrib-
uted. In Hamiltonian �42� this random variable now also
couples to the exchange constant J of the interactions be-
tween neighboring variables Si and thus the exchange con-
stant also becomes a random variable. The model �42� is thus
an Edward-Anderson-like model in a random field with an
asymmetrically distributed exchange constant J�i�i.

The two-stage approach to obtain the recognition ability
can now be carried out numerically for the model �42� by
calculating again density of states, J�K ;E�, by a Monte
Carlo simulation. The results for the averaged complementa-
rity of the probe molecules and the free energy difference are
depicted in Fig. 7. One observes a similar qualitative behav-
ior as the corresponding curves for the model �13�. Again, it
is found that an increase of the parameter J increases the
quality of the design step in the sense that the probe mol-
ecules are better optimized with respect to the target biomol-
ecule indicated by an increase of 
K� for higher values of J.
Similarly, the recognition ability measured by the free energy
difference �F=F�0�−F�1� for a given similarity Q between
the target and the rival grows for increasing J.

VI. CONCLUSIONS AND OUTLOOK

We have presented coarse-grained models to study the
properties of molecular recognition processes between rigid
biomolecules. The development of the models has been mo-
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FIG. 7. Averaged complementarity of the probe ensemble de-
signed according to the model �42�. The dashed curve represents
J=0, for the solid curves J /�=0.2, 0.3, and 0.4 from bottom up. For
comparison, the dotted line depicts the corresponding curve for the
model �13� with J /�=0.2. The inset shows free energy differences
as a function of the similarity Q for the same set of parameters,
where �D is chosen to have 
K� /N=0.4 �with �=1.0 for each
curve�.
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tivated by experimental investigations on the biochemical
structure of the interface of protein complexes. A two-stage
approach containing a design of probe molecules and a test-
ing of their recognition ability has been adopted. This ap-
proach has been used to investigate the role of cooperativity
in molecular recognition. The coarse-grained models capture
the effects of cooperativity on a residue-specific level. The
necessity of such an approach has been pointed out in the
literature �39�. We have shown numerical results and com-
pared them to analytic results obtained in the asymptotic
limit where cooperative interactions dominate over direct hy-
drophobic interactions between the residues and in the mean-
field formulation of the models. It turned out that a small
contribution due to cooperativity can already substantially
influence the recognition ability, corroborating the sugges-
tion that cooperativity has a considerable effect on the rec-
ognition specificity. Two possibilities to include cooperative
interactions have been explicitly analyzed, leading to similar
qualitative results. We note in passing that the proposed
coarse-grained model can reproduce qualitatively the experi-
mental observation that in antigen-antibody complexes,
which require a relatively high binding flexibility, a small
number of strong noncovalent bonds across the interface
seems to be favored compared to a situation with many but
rather weak bonds. The details are published elsewhere �28�.

The proposed approach to study molecular recognition
with coarse-grained lattice models can be extended in vari-
ous ways. Apart from working with refined models, which
capture more details of the actual physical interactions across
the interface of the two biomolecules, the design step can be
modified to mimic natural evolution in a more realistic man-
ner. The analysis presented considered on the level of the
target and the rival molecule is basically a single-molecule
approach, although the molecules are described in a very-
coarse-grained way. The influence of the heterogeneity of the
mixture of target and rival molecules encountered in real
physiological situations as found in a cell, for example, can
be incorporated in our analysis. To this end ensembles of
targets and rivals differing in certain properties, such as, for
example, correlations and length scales, have to be consid-
ered. A recent study indeed indicates that the local small-
scale structure related to the distribution of the hydrophobic-
ity on the recognition site of the biomolecules seems to play
a crucial role in molecular recognition �22�.
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